JEE MAIN - Mathematics (2006 - No. 10)

$$\int\limits_{ - {{3\pi } \over 2}}^{ - {\pi \over 2}} {\left[ {{{\left( {x + \pi } \right)}^3} + {{\cos }^2}\left( {x + 3\pi } \right)} \right]} dx$$ is equal to
$${{{\pi ^4}} \over {32}}$$
$${{{\pi ^4}} \over {32}} + {\pi \over 2}$$
$${\pi \over 2}$$
$${\pi \over 4} - 1$$

Explanation

$$I = \int\limits_{ - {{3\pi } \over 2}}^{ - {\pi \over 2}} {\left[ {{{\left( {x + \pi } \right)}^3} + {{\cos }^2}\left( {x + 3\pi } \right)} \right]} \,dx$$

Put $$x + \pi = t$$

$$I = \int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {\left( {{t^3} + {{\cos }^2}t} \right)dt} $$

$$ = 2\int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {{{\cos }^2}} tdt$$

$$\left[ {} \right.$$ using the property of even and odd function $$\left. {} \right]$$

$$ = \int\limits_0^{{\pi \over 2}} {\left( {1 + \cos 2t} \right)} dt = {\pi \over 2} + 0$$

Comments (0)

Advertisement