JEE MAIN - Mathematics (2005 - No. 50)

Let $$P$$ be the point $$(1, 0)$$ and $$Q$$ a point on the parabola $${y^2} = 8x$$. The locus of mid point of $$PQ$$ is :
$${y^2} - 4x + 2 = 0$$
$${y^2} + 4x + 2 = 0$$
$${x^2} + 4y + 2 = 0$$
$${x^2} - 4y + 2 = 0$$

Explanation

$$P = \left( {1,0} \right)\,\,Q = \left( {h,k} \right)$$ Such that $${k^2} = 8h$$

Let $$\left( {\alpha ,\beta } \right)$$ be the midpoint of $$PQ$$

$$\alpha = {{h + 1} \over 2},\,\,\,\beta = {{k + 0} \over 2}$$

$$ \therefore $$ $$2\alpha - 1 = h\,\,\,\,\,\,2\beta = k.$$

$${\left( {2\beta } \right)^2} = 8\left( {2\alpha - 1} \right) \Rightarrow {\beta ^2} = 4\alpha - 2$$

$$ \Rightarrow {y^2} - 4x + 2 = 0.$$

Comments (0)

Advertisement