JEE MAIN - Mathematics (2005 - No. 5)

Let $$\alpha$$ and $$\beta$$ be the distinct roots of $$a{x^2} + bx + c = 0$$, then

$$\mathop {\lim }\limits_{x \to \alpha } {{1 - \cos \left( {a{x^2} + bx + c} \right)} \over {{{\left( {x - \alpha } \right)}^2}}}$$ is equal to
$${{{a^2}{{\left( {\alpha - \beta } \right)}^2}} \over 2}$$
0
$$ - {{{a^2}{{\left( {\alpha - \beta } \right)}^2}} \over 2}$$
$${{{{\left( {\alpha - \beta } \right)}^2}} \over 2}$$

Explanation

Given limit $$ = \mathop {\lim }\limits_{x \to \alpha } {{1 - \cos \,a\left( {x - \alpha } \right)\left( {x - \beta } \right)} \over {{{\left( {x - \alpha } \right)}^2}}}$$

$$ = \mathop {\lim }\limits_{x \to \alpha } {{2{{\sin }^2}\left( {a{{\left( {x - \alpha } \right)\left( {x - \beta } \right)} \over 2}} \right)} \over {{{\left( {x - \alpha } \right)}^2}}}$$

$$ = \mathop {\lim }\limits_{x \to \alpha } {2 \over {{{\left( {x - \alpha } \right)}^2}}} \times {{{{\sin }^2}\left( {a{{\left( {x - \alpha } \right)\left( {x - \beta } \right)} \over 2}} \right)} \over {{{{a^2}{{\left( {x - \alpha } \right)}^2}{{\left( {x - \beta } \right)}^2}} \over 4}}} \times {{{a^2}{{\left( {x - \alpha } \right)}^2}{{\left( {x - \beta } \right)}^2}} \over 4}$$

$$ = {{{a^2}{{\left( {\alpha - \beta } \right)}^2}} \over 2}.$$

Comments (0)

Advertisement