JEE MAIN - Mathematics (2005 - No. 41)

If the coefficient of $${x^7}$$ in $${\left[ {a{x^2} + \left( {{1 \over {bx}}} \right)} \right]^{11}}$$ equals the coefficient of $${x^{ - 7}}$$ in $${\left[ {ax - \left( {{1 \over {b{x^2}}}} \right)} \right]^{11}}$$, then $$a$$ and $$b$$ satisfy the relation
$$a - b = 1$$
$$a + b = 1$$
$${a \over b} = 1$$
$$ab = 1$$

Explanation

General term of $${\left[ {a{x^2} + \left( {{1 \over {bx}}} \right)} \right]^{11}}$$ is Tr+1.

Tr+1 = $${}^{11}{C_r}{\left( {a{x^2}} \right)^{11 - r}}{\left( {{1 \over {bx}}} \right)^r}$$

= $${}^{11}{C_r}{\left( a \right)^{11 - r}}{\left( b \right)^{ - r}}{\left( x \right)^{22 - 3r}}$$

For the coefficient of x7,

$$ \Rightarrow $$ 22 - 3r = 7

$$ \Rightarrow $$ r = 5

So coefficient of x7 = $${}^{11}{C_5}{\left( a \right)^6}{\left( b \right)^{ - 5}}$$ ......(1)

Now General term of $${\left[ {ax - \left( {{1 \over {b{x^2}}}} \right)} \right]^{11}}$$ is Tr+1.

Tr+1 = $${}^{11}{C_r}{\left( {a{x}} \right)^{11 - r}}{\left( { - {1 \over {bx}}} \right)^r}$$

= $${}^{11}{C_r}{\left( a \right)^{11 - r}}{\left( { - 1} \right)^r}{\left( b \right)^{ - r}}{\left( x \right)^{11 - r}}{\left( x \right)^{ - 2r}}$$

For the coefficient of x-7,

11 - 3r = -7

$$ \Rightarrow $$ r = 6

$$\therefore$$ Coefficient of x-7 = $${}^{11}{C_6}{\left( a \right)^5}{\left( { - 1} \right)^6}{\left( b \right)^{ - 6}}$$

According to question,

Coefficient of x7 = Coefficient of x-7

$$ \Rightarrow $$ $${}^{11}{C_5}{\left( a \right)^6}{\left( b \right)^{ - 5}}$$ = $${}^{11}{C_6}{\left( a \right)^5}{\left( { - 1} \right)^6}{\left( b \right)^{ - 6}}$$

$$ \Rightarrow $$ $$ab = 1$$

Comments (0)

Advertisement