JEE MAIN - Mathematics (2005 - No. 33)
The angle between the lines $$2x=3y=-z$$ and $$6x=-y=-4z$$ is :
$${0^ \circ }$$
$${90^ \circ }$$
$${45^ \circ }$$
$${30^ \circ }$$
Explanation
The given lines are $$2x = 3y = - z$$
or $$\,\,\,\,\,\,\,\,\,\,{x \over 3} = {y \over 2} = {z \over { - 6}}$$ $$\,\,\,\left[ {} \right.$$ Dividing by $$6$$ $$\left. {} \right]$$
and $$6x = - y = - 4z$$
or $$\,\,\,\,\,\,\,\,\,{x \over 2} = {y \over { - 12}} = {z \over { - 3}}$$ $$\,\,\,\,\left[ {} \right.$$ Dividing by $$12$$ $$\left. {} \right]$$
$$\therefore$$ Angle between two lines is
$$\cos \theta = {{3.2 + 2.\left( { - 12} \right) + \left( { - 6} \right).\left( { - 3} \right)} \over {\sqrt {{3^2} + {2^2} + {{\left( { - 6} \right)}^2}} \sqrt {{2^2} + {{\left( { - 12} \right)}^2} + {{\left( { - 3} \right)}^2}} }}$$
$$ = {{6 - 24 + 18} \over {\sqrt {49} \sqrt {157} }} = 0 \Rightarrow \theta = {90^ \circ }$$
or $$\,\,\,\,\,\,\,\,\,\,{x \over 3} = {y \over 2} = {z \over { - 6}}$$ $$\,\,\,\left[ {} \right.$$ Dividing by $$6$$ $$\left. {} \right]$$
and $$6x = - y = - 4z$$
or $$\,\,\,\,\,\,\,\,\,{x \over 2} = {y \over { - 12}} = {z \over { - 3}}$$ $$\,\,\,\,\left[ {} \right.$$ Dividing by $$12$$ $$\left. {} \right]$$
$$\therefore$$ Angle between two lines is
$$\cos \theta = {{3.2 + 2.\left( { - 12} \right) + \left( { - 6} \right).\left( { - 3} \right)} \over {\sqrt {{3^2} + {2^2} + {{\left( { - 6} \right)}^2}} \sqrt {{2^2} + {{\left( { - 12} \right)}^2} + {{\left( { - 3} \right)}^2}} }}$$
$$ = {{6 - 24 + 18} \over {\sqrt {49} \sqrt {157} }} = 0 \Rightarrow \theta = {90^ \circ }$$
Comments (0)
