JEE MAIN - Mathematics (2005 - No. 27)

If $$x{{dy} \over {dx}} = y\left( {\log y - \log x + 1} \right),$$ then the solution of the equation is :
$$y\log \left( {{x \over y}} \right) = cx$$
$$x\log \left( {{y \over x}} \right) = cy$$
$$\log \left( {{y \over x}} \right) = cx$$
$$\log \left( {{x \over y}} \right) = cy$$

Explanation

$${{xdy} \over {dx}} = y\left( {\log y - \log x + 1} \right)$$

$${{dy} \over {dx}} = {y \over x}\left( {\log \left( {{y \over x}} \right) + 1} \right)$$

Put $$\,\,\,\,y = vx$$

$${{dy} \over {dx}} = v + {{xdv} \over {dx}}$$

$$\,\,\,\,\,\,\,\,\,\,\, \Rightarrow v + {{xdv} \over {dx}} = v\left( {\log v + 1} \right)$$

$${{xdv} \over {dx}} = v\,\log \,v$$

$$\,\,\,\,\,\,\,\,\,\,\, \Rightarrow {{dv} \over {v\,\log \,v}} = {{dx} \over x}$$

Put $$\,\,\,\,\log \,v = z$$

$$ \Rightarrow {1 \over v}dv = dz$$

$$ \Rightarrow {{dz} \over x} = {{dx} \over x}$$

$$ \Rightarrow \ln \,z = \ln x + \ln \,c$$

$$x = cx\,\,\,\,$$ or $$\,\,\,\,\,\log v = cx\,\,\,$$

or $$\,\,\,\,$$ $$\log \left( {{y \over x}} \right) = cx.$$

Comments (0)

Advertisement