JEE MAIN - Mathematics (2005 - No. 24)

If $${\cos ^{ - 1}}x - {\cos ^{ - 1}}{y \over 2} = \alpha ,$$ then $$4{x^2} - 4xy\cos \alpha + {y^2}$$ is equal to :
$$2\sin 2\alpha $$
$$4$$
$$4{\sin ^2}\alpha $$
$$-4{\sin ^2}\alpha $$

Explanation

As we know,

$${\cos ^{ - 1}}A - {\cos ^{ - 1}}B$$

$$ = {\cos ^{ - 1}}\left( {AB + \sqrt {1 - {A^2}} .\sqrt {1 - {B^2}} } \right)$$

Given, $${\cos ^{ - 1}}x - {\cos ^{ - 1}}{y \over 2} = \alpha $$

$$ \Rightarrow {\cos ^{ - 1}}\left( {x.{y \over 2} + \sqrt {1 - {x^2}} .\sqrt {1 - {{{y^2}} \over 4}} } \right) = \alpha $$

$$ \Rightarrow {{xy} \over 2} + \sqrt {1 - {x^2}} \sqrt {1 - {{y{}^2} \over 4}} = \cos \,x$$

$$ \Rightarrow {\left( {\cos x - {{xy} \over 2}} \right)^2} = \left( {1 - {x^2}} \right)\left( {1 - {{{y^2}} \over 4}} \right)$$

$$ \Rightarrow {\cos ^2} + {{{x^2}{y^2}} \over 4} - 2.\cos x.{{xy} \over 2}$$

$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 1 - {x^2} - {{{y^2}} \over 4} + {{{x^2}{y^2}} \over 4}$$

$$ \Rightarrow {x^2} + {{{y^2}} \over 4} - xy\,\cos x = 1 - {\cos ^2}x$$

$$ \Rightarrow {x^2} + {{{y^2}} \over 4} - xy\cos x = {\sin ^2}x$$

$$ \Rightarrow 4{x^2} + y{}^2 - 4xy\cos x = 4{\sin ^2}x$$

Comments (0)

Advertisement