JEE MAIN - Mathematics (2005 - No. 20)

If $${I_1} = \int\limits_0^1 {{2^{{x^2}}}dx,{I_2} = \int\limits_0^1 {{2^{{x^3}}}dx,\,{I_3} = \int\limits_1^2 {{2^{{x^2}}}dx} } } $$ and $${I_4} = \int\limits_1^2 {{2^{{x^3}}}dx} $$ then
$${I_2} > {I_1}$$
$${I_1} > {I_2}$$
$${I_3} = {I_4}$$
$${I_3} > {I_4}$$

Explanation

$${I_1} = \int\limits_0^1 {{2^{{x^2}}}} dx,\,{I_2} = \int\limits_0^1 {{2^{{x^3}}}} dx,$$

$$ = {I_3} = \int\limits_0^1 {{2^{{x^2}}}} dx,\,$$

$${I_4} = \int\limits_0^1 {{2^{{x^3}}}} dx\,\,$$

$$\forall 0 < x < 1,\,{x^2} > {x^3}$$

$$ \Rightarrow \int\limits_0^1 {{2^{{x^2}}}} \,dx > \int\limits_0^1 {{2^{{x^3}}}} dx$$

and $$\int\limits_1^2 {{2^{{x^3}}}dx} > \int\limits_1^2 {{2^{{x^2}}}dx} $$

$$ \Rightarrow {I_1} > {I_2}$$ and $${I_4} > {I_3}$$

Comments (0)

Advertisement