JEE MAIN - Mathematics (2005 - No. 17)

If $${a_1},{a_2},{a_3},........,{a_n},.....$$ are in G.P., then the determinant $$$\Delta = \left| {\matrix{ {\log {a_n}} & {\log {a_{n + 1}}} & {\log {a_{n + 2}}} \cr {\log {a_{n + 3}}} & {\log {a_{n + 4}}} & {\log {a_{n + 5}}} \cr {\log {a_{n + 6}}} & {\log {a_{n + 7}}} & {\log {a_{n + 8}}} \cr } } \right|$$$
is equal to :
$$1$$
$$0$$
$$4$$
$$2$$

Explanation

As $$\,\,\,\,{a_1},{a_2},{a_3},.........$$ are in $$G.P.$$

$$\therefore$$ Using $${a_n} = a{r^{n - 1}},\,\,\,$$ we get the given determinant,

as $$\,\,\,\,\,\,\,\left| {\matrix{ {\log a{r^{n - 1}}} & {\log a{r^n}} & {\log a{r^{n + 1}}} \cr {\log a{r^{n + 2}}} & {\log a{r^{n + 3}}} & {\log a{r^{n + 4}}} \cr {\log a{r^{n + 5}}} & {\log a{r^{n + 6}}} & {\log a{r^{n + 7}}} \cr } } \right|$$

Operating $${C_3} - {C_2}$$ and $${C_2} - {C_1}$$ and using

$$\log m - \log n = \log {m \over n}\,\,\,\,$$ we get

$$ = \left| {\matrix{ {\log a{r^{n - 1}}} & {\log r} & {\log r} \cr {\log a{r^{n + 2}}} & {\log r} & {\log r} \cr {\log a{r^{n + 5}}} & {\log r} & {\log r} \cr } } \right| $$

$$=0$$ (two columns being identical)

Comments (0)

Advertisement