JEE MAIN - Mathematics (2005 - No. 16)

The system of equations

$$\matrix{ {\alpha \,x + y + z = \alpha - 1} \cr {x + \alpha y + z = \alpha - 1} \cr {x + y + \alpha \,z = \alpha - 1} \cr } $$

has no solutions, if $$\alpha $$ is :

$$-2$$
either $$-2$$ or $$1$$
not $$-2$$
$$1$$

Explanation

$$ax + y + z = \alpha - 1$$

$$x + \alpha \,y + z = \alpha - 1;$$

$$x + y + z\alpha = \alpha - 1$$

$$\Delta = \left| {\matrix{ \alpha & 1 & 1 \cr 1 & \alpha & 1 \cr 1 & 1 & \alpha \cr } } \right|$$

$$ = \alpha \left( {{\alpha ^2} - 1} \right) - 1\left( {\alpha - 1} \right) + 1\left( {1 - \alpha } \right)$$

$$ = \alpha \left( {\alpha - 1} \right)\left( {\alpha + 1} \right) - 1\left( {\alpha - 1} \right) - 1\left( {\alpha - 1} \right)$$

For infinite solutions, $$\Delta = 0$$

$$ \Rightarrow \left( {\alpha - 1} \right)\left[ {{\alpha ^2} + \alpha - 1 - 1} \right] = 0$$

$$ \Rightarrow \left( {\alpha - 1} \right)\left[ {{\alpha ^2} + \alpha - 2} \right] = 0$$

$$ \Rightarrow \alpha = - 2,1;$$

But $$\alpha \ne 1.\,\,\,$$ $$\therefore$$ $$\,\,\alpha = - 2$$

Comments (0)

Advertisement