JEE MAIN - Mathematics (2005 - No. 13)

Area of the greatest rectangle that can be inscribed in the
ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$
$$2ab$$
$$ab$$
$$\sqrt {ab} $$
$${a \over b}$$

Explanation

Area of rectangle $$ABCD$$ $$ = 2a\,\cos \,\theta $$

$$\left( {2b\,\sin \,\theta } \right) = 2ab\,\sin \,2\theta $$

AIEEE 2005 Mathematics - Application of Derivatives Question 203 English Explanation

$$ \Rightarrow $$ Area of greatest rectangle is equal to $$2ab$$

When $$\sin \,2\theta = 1.$$

Comments (0)

Advertisement