JEE MAIN - Mathematics (2005 - No. 11)

The value of $$\int\limits_{ - \pi }^\pi {{{{{\cos }^2}} \over {1 + {a^x}}}dx,\,\,a > 0,} $$ is
$$a\,\pi $$
$${\pi \over 2}$$
$${\pi \over a}$$
$${2\pi }$$

Explanation

Let $$I = \int\limits_{ - \pi }^\pi {{{{{\cos }^2}x} \over {1 + {a^x}}}} dx\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)$$

$$ = \int\limits_{ - \pi }^\pi {{{{{\cos }^2}\left( { - x} \right)} \over {1 + {a^{ - x}}}}} dx$$

$$\left[ \, \right.$$ Using $$\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)dx} $$ $$\left. \, \right]$$

$$ = \int\limits_{ - \pi }^\pi {{{{{\cos }^2}x} \over {1 + {\alpha ^x}}}} dx\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( 2 \right)$$

Adding equations $$(1)$$ and $$(2)$$ we get

$$2I = \int\limits_{ - \pi }^\pi {{{\cos }^2}} x\left( {{{1 + {a^x}} \over {1 + {a^x}}}} \right)dx$$

$$ = \int\limits_{ - \pi }^\pi {{{\cos }^2}} x\,dx$$

$$ = 2\int\limits_0^\pi {{{\cos }^2}} x\,dx$$

$$ = 2 \times 2\int\limits_0^{{\pi \over 2}} {{{\cos }^2}} x\,dx$$

$$ = 4\int\limits_0^{{\pi \over 2}} {{{\sin }^2}} x\,dx$$

$$ \Rightarrow I = 2\int\limits_0^{{\pi \over 2}} {{{\sin }^2}} \,x\,dx$$

$$ = 2\int\limits_0^{{\pi \over 2}} {\left( {1 - {{\cos }^2}x\,dx} \right)} $$

$$ \Rightarrow I\,\, = 2\int\limits_0^{{\pi \over 2}} {dx - 2\int\limits_0^{{\pi \over 2}} {{{\cos }^2}} } \,x\,dx$$

$$ \Rightarrow I + I = 2\left( {{\pi \over 2}} \right) = \pi $$

$$ \Rightarrow I = {\pi \over 2}$$

Comments (0)

Advertisement