JEE MAIN - Mathematics (2004 - No. 43)

If the lines 2x + 3y + 1 + 0 and 3x - y - 4 = 0 lie along diameter of a circle of circumference $$10\,\pi $$, then the equation of the circle is :
$${x^2}\, + \,{y^2} + \,2x\, - \,2y - \,23\,\, = 0$$
$${x^2}\, + \,{y^2} - \,2x\, - \,2y - \,23\,\, = 0$$
$${x^2}\, + \,{y^2} + \,2x\, + \,2y - \,23\,\, = 0$$
$${x^2}\, + \,{y^2} - \,2x\, + \,2y - \,23\,\, = 0$$

Explanation

Two diameters are along

$$2x+3y+1=0$$ and $$3x-y-4=0$$

solving we get center $$(1,-1)$$

circumference $$ = 2\pi r = 10\pi $$

$$\therefore$$ $$r=5$$.

Required circle is, $${\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} = {5^2}$$

$$ \Rightarrow {x^2} + {y^2} - 2x + 2y - 23 = 0$$

Comments (0)

Advertisement