JEE MAIN - Mathematics (2004 - No. 40)

The coefficient of $${x^n}$$ in expansion of $$\left( {1 + x} \right){\left( {1 - x} \right)^n}$$ is
$${\left( { - 1} \right)^{n - 1}}n$$
$${\left( { - 1} \right)^n}\left( {1 - n} \right)$$
$${\left( { - 1} \right)^{n - 1}}{\left( {n - 1} \right)^2}$$
$$\left( {n - 1} \right)$$

Explanation

Given $$\left( {1 + x} \right){\left( {1 - x} \right)^n}$$

= $${\left( {1 - x} \right)^n}$$ + $$x{\left( {1 - x} \right)^n}$$

General term of $${\left( {1 - x} \right)^n}$$ = $${}^n{C_r}.{\left( { - 1} \right)^r}.{x^r}$$

$$\therefore$$ Term containing $${x^n}$$ in $${\left( {1 - x} \right)^n}$$ = $${}^n{C_n}.{\left( { - 1} \right)^n}.{x^n}$$

So coefficient of $${x^n}$$ in $${\left( {1 - x} \right)^n}$$ = $${}^n{C_n}.{\left( { - 1} \right)^n}$$

General term of $$x{\left( {1 - x} \right)^n}$$ = $${}^n{C_r}.{\left( { - 1} \right)^r}.{x^{r + 1}}$$

$$\therefore$$ Term containing $${x^n}$$ in $$x{\left( {1 - x} \right)^n}$$ = $${}^n{C_{n - 1}}.{\left( { - 1} \right)^{n - 1}}.{x^n}$$

So coefficient of $${x^n}$$ in $$x{\left( {1 - x} \right)^n}$$ = $${}^n{C_{n - 1}}.{\left( { - 1} \right)^{n - 1}}$$

$$\therefore$$ coefficient of $${x^n}$$ in $${\left( {1 - x} \right)^n}$$ + $$x{\left( {1 - x} \right)^n}$$

= $${}^n{C_n}.{\left( { - 1} \right)^n}$$ + $${}^n{C_{n - 1}}.{\left( { - 1} \right)^{n - 1}}$$

= $${\left( { - 1} \right)^{n - 1}}\left[ {{}^n{C_{n - 1}} - {}^n{C_n}} \right]$$

= $${\left( { - 1} \right)^{n - 1}}\left[ {n - 1} \right]$$

= $${\left( { - 1} \right)^n}\left[ {1 - n} \right]$$

Comments (0)

Advertisement