JEE MAIN - Mathematics (2004 - No. 35)

If $$\left( {1 - p} \right)$$ is a root of quadratic equation $${x^2} + px + \left( {1 - p} \right) = 0$$ then its root are
$$ - 1,2$$
$$ - 1,1$$
$$ 0,-1$$
$$0,1$$

Explanation

Let the second root be $$\alpha .$$

Then $$\alpha + \left( {1 - p} \right) = - p \Rightarrow \alpha = - 1$$

Also $$\alpha .\left( {1 - p} \right) = 1 - p$$

$$ \Rightarrow \left( {\alpha - 1} \right)\left( {1 - p} \right) = 0$$

$$ \Rightarrow p = 1$$ [as $$\alpha = - 1$$]

$$\therefore$$ Roots are $$\alpha = - 1$$ and $$p-1=0$$

Comments (0)

Advertisement