JEE MAIN - Mathematics (2004 - No. 27)

Let $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ be three non-zero vectors such that no two of these are collinear. If the vector $$\overrightarrow a + 2\overrightarrow b $$ is collinear with $$\overrightarrow c $$ and $$\overrightarrow b + 3\overrightarrow c $$ is collinear with $$\overrightarrow a $$ ($$\lambda $$ being some non-zero scalar) then $$\overrightarrow a + 2\overrightarrow b + 6\overrightarrow c $$ equals to :
$\overrightarrow{0}$
$$\lambda \overrightarrow b $$
$$\lambda \overrightarrow c $$
$$\lambda \overrightarrow a $$

Explanation

If $\overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}$ is collinear with $\overrightarrow{\mathbf{c}}$, then

$$ \overrightarrow{\mathbf{a}}+2 \overrightarrow{\mathbf{b}}=t \overrightarrow{\mathbf{c}} $$

Also, if $\overrightarrow{\mathbf{b}}+3 \overrightarrow{\mathbf{c}}$ is collinear with $\overrightarrow{\mathbf{a}}$, then

$$ \begin{aligned} & \overrightarrow{\mathbf{b}}+3 \overrightarrow{\mathbf{c}}=\lambda \overrightarrow{\mathbf{a}} \\\\ & \Rightarrow \overrightarrow{\mathbf{b}}=\lambda \overrightarrow{\mathbf{a}}-3 \overrightarrow{\mathbf{c}} \end{aligned} $$

On putting this value in Eq. (i), we get

$$ \overrightarrow{\mathbf{a}}+2(\lambda \overrightarrow{\mathbf{a}}-3 \overrightarrow{\mathbf{c}})=t \overrightarrow{\mathbf{c}} $$

$$ \Rightarrow \overrightarrow{\mathbf{a}}+2 \lambda \overrightarrow{\mathbf{a}}-6 \overrightarrow{\mathbf{c}}=t \overrightarrow{\mathbf{c}} $$

$$ \Rightarrow (\overrightarrow{\mathbf{a}}-6 \overrightarrow{\mathbf{c}})=t \overrightarrow{\mathbf{c}}-2 \lambda \overrightarrow{\mathbf{a}} $$

On comparing, we get

and $-6=t $

$\Rightarrow t=-6$

From Eq. (i),

$$\vec{a}+2 \vec{b}=-6 \vec{c} $$

$$\Rightarrow \vec{a}+2 \vec{b}+6 \vec{c}=\overrightarrow{0}$$

Comments (0)

Advertisement