JEE MAIN - Mathematics (2004 - No. 23)
Solution of the differential equation $$ydx + \left( {x + {x^2}y} \right)dy = 0$$ is
$$log$$ $$y=Cx$$
$$ - {1 \over {xy}} + \log y = C$$
$${1 \over {xy}} + \log y = C$$
$$ - {1 \over {xy}} = C$$
Explanation
$$ydx + \left( {x + {x^2}y} \right)dy = 0$$
$$ \Rightarrow {{dx} \over {dy}} = - {x \over y} - {x^2}$$
$$ \Rightarrow {{dx} \over {dy}} + {x \over y} = - {x^2},$$
It is Bernoullis form. Divide by $${x^2}$$
$${x^{ - 2}}{{dx} \over {dy}} + {x^{ - 1}}\left( {{1 \over y}} \right) = - 1.$$
put $${x^{ - 1}} = t,\,\, - {x^{ - 2}}{{dx} \over {dy}} = {{dt} \over {dy}}$$
We get, $$ - {{dt} \over {dy}} + t\left( {{1 \over y}} \right) = - 1$$
$$ \Rightarrow {{dt} \over {dy}} - \left( {{1 \over y}} \right)t = 1$$
It is linear in $$t.$$
Integrating factor
$$ = {e^{\int { - {1 \over y}dy} }} = {e^{ - \log y}} = {y^{ - 1}}$$
$$\therefore$$ Solution is
$$t\left( {{y^{ - 1}}} \right) = \int {\left( {{y^{ - 1}}} \right)} dy + c$$
$$ \Rightarrow {1 \over x}.{1 \over y} = \log y + c$$
$$ \Rightarrow \log y - {1 \over {xy}} = c$$
$$ \Rightarrow {{dx} \over {dy}} = - {x \over y} - {x^2}$$
$$ \Rightarrow {{dx} \over {dy}} + {x \over y} = - {x^2},$$
It is Bernoullis form. Divide by $${x^2}$$
$${x^{ - 2}}{{dx} \over {dy}} + {x^{ - 1}}\left( {{1 \over y}} \right) = - 1.$$
put $${x^{ - 1}} = t,\,\, - {x^{ - 2}}{{dx} \over {dy}} = {{dt} \over {dy}}$$
We get, $$ - {{dt} \over {dy}} + t\left( {{1 \over y}} \right) = - 1$$
$$ \Rightarrow {{dt} \over {dy}} - \left( {{1 \over y}} \right)t = 1$$
It is linear in $$t.$$
Integrating factor
$$ = {e^{\int { - {1 \over y}dy} }} = {e^{ - \log y}} = {y^{ - 1}}$$
$$\therefore$$ Solution is
$$t\left( {{y^{ - 1}}} \right) = \int {\left( {{y^{ - 1}}} \right)} dy + c$$
$$ \Rightarrow {1 \over x}.{1 \over y} = \log y + c$$
$$ \Rightarrow \log y - {1 \over {xy}} = c$$
Comments (0)
