JEE MAIN - Mathematics (2004 - No. 14)
the inverse of matrix $$A$$, then $$\alpha $$ is
$$5$$
$$-1$$
$$2$$
$$-2$$
Explanation
Given that $$10B$$ $$\,\,\, = \left[ {\matrix{
4 & 2 & 2 \cr
{ - 5} & 0 & \alpha \cr
1 & { - 2} & 3 \cr
} } \right]$$
$$ \Rightarrow B = {1 \over {10}}\left[ {\matrix{ 4 & 2 & 2 \cr { - 5} & 0 & \alpha \cr 1 & { - 2} & 3 \cr } } \right]$$
Also since, $$B = {A^{ - 1}} \Rightarrow AB = I$$
$$ \Rightarrow {1 \over {10}}\left[ {\matrix{ 1 & { - 1} & 1 \cr 2 & 1 & { - 3} \cr 1 & 1 & 1 \cr } } \right]\left[ {\matrix{ 4 & 2 & 2 \cr { - 5} & 0 & \alpha \cr 1 & { - 2} & 3 \cr } } \right] = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right]$$
$$ \Rightarrow {1 \over {10}}\left[ {\matrix{ {10} & 0 & {5 - 2} \cr 0 & {10} & { - 5 + \alpha } \cr 0 & 0 & {5 + \alpha } \cr } } \right] = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right]$$
$$ \Rightarrow {{5 - \alpha } \over {10}} = 0$$
$$ \Rightarrow \alpha = 5$$
$$ \Rightarrow B = {1 \over {10}}\left[ {\matrix{ 4 & 2 & 2 \cr { - 5} & 0 & \alpha \cr 1 & { - 2} & 3 \cr } } \right]$$
Also since, $$B = {A^{ - 1}} \Rightarrow AB = I$$
$$ \Rightarrow {1 \over {10}}\left[ {\matrix{ 1 & { - 1} & 1 \cr 2 & 1 & { - 3} \cr 1 & 1 & 1 \cr } } \right]\left[ {\matrix{ 4 & 2 & 2 \cr { - 5} & 0 & \alpha \cr 1 & { - 2} & 3 \cr } } \right] = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right]$$
$$ \Rightarrow {1 \over {10}}\left[ {\matrix{ {10} & 0 & {5 - 2} \cr 0 & {10} & { - 5 + \alpha } \cr 0 & 0 & {5 + \alpha } \cr } } \right] = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right]$$
$$ \Rightarrow {{5 - \alpha } \over {10}} = 0$$
$$ \Rightarrow \alpha = 5$$
Comments (0)
