JEE MAIN - Mathematics (2003 - No. 32)

If $$\left| {\matrix{ a & {{a^2}} & {1 + {a^3}} \cr b & {{b^2}} & {1 + {b^3}} \cr c & {{c^2}} & {1 + {c^3}} \cr } } \right| = 0$$ and vectors $$\left( {1,a,{a^2}} \right),\,\,$$

$$\left( {1,b,{b^2}} \right)$$ and $$\left( {1,c,{c^2}} \right)\,$$ are non-coplanar, then the product $$abc$$ equals :
$$0$$
$$2$$
$$-1$$
$$1$$

Explanation

$$\left| {\matrix{ a & {{a^2}} & {1 + {a^3}} \cr b & {{b^2}} & {1 + {b^3}} \cr c & {{c^2}} & {1 + {c^3}} \cr } } \right| = 0$$

$$ \Rightarrow \left| {\matrix{ a & {{a^2}} & 1 \cr b & {{b^2}} & 1 \cr c & {{c^2}} & 1 \cr } } \right| + \left| {\matrix{ a & {{a^2}} & {{a^3}} \cr b & {{b^2}} & {{b^3}} \cr c & {{c^2}} & {{c^3}} \cr } } \right| = 0$$

$$ \Rightarrow \left( {1 + abc} \right)\left| {\matrix{ 1 & a & {{a^2}} \cr 1 & b & {{b^2}} \cr 1 & c & {{c^2}} \cr } } \right| = 0$$

As $$\,\,\,\left| {\matrix{ 1 & a & {{a^2}} \cr 1 & b & {{b^2}} \cr 1 & c & {{c^2}} \cr } } \right| \ne 0$$ (given condition)

$$\therefore$$ $$abc=-1$$

Comments (0)

Advertisement