JEE MAIN - Mathematics (2003 - No. 22)

The solution of the differential equation

$$\left( {1 + {y^2}} \right) + \left( {x - {e^{{{\tan }^{ - 1}}y}}} \right){{dy} \over {dx}} = 0,$$ is :
$$x{e^{2{{\tan }^{ - 1}}y}} = {e^{{{\tan }^{ - 1}}y}} + k$$
$$\left( {x - 2} \right) = k{e^{2{{\tan }^{ - 1}}y}}$$
$$2x{e^{{{\tan }^{ - 1}}y}} = {e^{2{{\tan }^{ - 1}}y}} + k$$
$$x{e^{{{\tan }^{ - 1}}y}} = {\tan ^{ - 1}}y + k$$

Explanation

$$\left( {1 + {y^2}} \right) + \left( {x - {e^{{{\tan }^{ - 1}}y}}} \right){{dy} \over {dx}} = 0$$

$$ \Rightarrow {{dx} \over {dy}} + {x \over {\left( {1 + {y^2}} \right)}} = {{{e^{{{\tan }^{ - 1}}y}}} \over {\left( {1 + {y^2}} \right)}}$$

$$I.F = e{}^{\int {{1 \over {\left( {1 + {y^2}} \right)}}dy} } = {e^{{{\tan }^{ - 1}}y}}$$

$$x\left( {{e^{{{\tan }^{ - 1}}y}}} \right) = \int {{{{e^{{{\tan }^{ - 1}}y}}} \over {1 + {y^2}}}} {e^{{{\tan }^{ - 1}}y}}\,dy$$

$$x\left( {{e^{{{\tan }^{ - 1}}y}}} \right) = {{{e^{2{{\tan }^{ - 1}}y}}} \over 2} + C$$

$$\therefore$$ $$\,\,\,\,\,2x{e^{{{\tan }^{ - 1}}y}} = {e^{2{{\tan }^{ - 1}}y}} + k$$

Comments (0)

Advertisement