JEE MAIN - Mathematics (2003 - No. 15)

If $$A = \left[ {\matrix{ a & b \cr b & a \cr } } \right]$$ and $${A^2} = \left[ {\matrix{ \alpha & \beta \cr \beta & \alpha \cr } } \right]$$, then
$$\alpha = 2ab,\,\beta = {a^2} + {b^2}$$
$$\alpha = {a^2} + {b^2},\,\beta = ab$$
$$\alpha = {a^2} + {b^2},\,\beta = 2ab$$
$$\alpha = {a^2} + {b^2},\,\beta = {a^2} - {b^2}$$

Explanation

$${A^2} = \left[ {\matrix{ \alpha & \beta \cr \beta & \alpha \cr } } \right] = \left[ {\matrix{ a & b \cr b & a \cr } } \right]\left[ {\matrix{ a & b \cr b & a \cr } } \right]$$

$$ = \left[ {\matrix{ {{a^2} + {b^2}} & {2ab} \cr {2ab} & {{a^2} + {b^2}} \cr } } \right]$$

$$\alpha = {a^2} + {b^2};\,\,\beta = 2ab$$

Comments (0)

Advertisement