JEE MAIN - Mathematics (2002 - No. 6)
$$\mathop {\lim }\limits_{x \to \infty } {\left( {{{{x^2} + 5x + 3} \over {{x^2} + x + 2}}} \right)^x}$$
$${e^4}$$
$${e^2}$$
$${e^3}$$
$$1$$
Explanation
$$\mathop {\lim }\limits_{x \to \infty } {\left( {{{{x^2} + 5x + 3} \over {{x^2} + x + 2}}} \right)^x}$$
$$ = \mathop {\lim }\limits_{x \to \infty } {\left( {1 + {{4x + 1} \over {{x^2} + x + 2 }}} \right)^x}$$
$$ = \mathop {\lim }\limits_{x \to \infty } {\left[ {{{\left( {1 + {{4x + 1} \over {{x^2} + x + 2}}} \right)}^{{{{x^2} + x + 2} \over {4x + 1}}}}} \right]^{{{\left( {4x + 1} \right)x} \over {{x^2} + x + 2}}}}$$
=$$\mathop {\lim }\limits_{x \to \infty } {\left[ {{{\left( {1 + {{4x + 1} \over {{x^2} + x + 2}}} \right)}^{{1 \over {{{4x + 1} \over {{x^2} + x + 2}}}}}}} \right]^{{{\left( {4x + 1} \right)x} \over {{x^2} + x + 2}}}}$$
$$ = {e^{\mathop {\lim }\limits_{x \to \infty } {{4{x^2} + x} \over {{x^2} + x + 2}}}}$$
[ As $$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \lambda x} \right)^{{1 \over x}}} = {e^\lambda }$$ ]
$$ = {e^{\mathop {\lim }\limits_{x \to \infty } {{4 + {1 \over x}} \over {1 + {1 \over x} + {2 \over {{x^2}}}}}}} = {e^4}$$
$$ = \mathop {\lim }\limits_{x \to \infty } {\left( {1 + {{4x + 1} \over {{x^2} + x + 2 }}} \right)^x}$$
$$ = \mathop {\lim }\limits_{x \to \infty } {\left[ {{{\left( {1 + {{4x + 1} \over {{x^2} + x + 2}}} \right)}^{{{{x^2} + x + 2} \over {4x + 1}}}}} \right]^{{{\left( {4x + 1} \right)x} \over {{x^2} + x + 2}}}}$$
=$$\mathop {\lim }\limits_{x \to \infty } {\left[ {{{\left( {1 + {{4x + 1} \over {{x^2} + x + 2}}} \right)}^{{1 \over {{{4x + 1} \over {{x^2} + x + 2}}}}}}} \right]^{{{\left( {4x + 1} \right)x} \over {{x^2} + x + 2}}}}$$
$$ = {e^{\mathop {\lim }\limits_{x \to \infty } {{4{x^2} + x} \over {{x^2} + x + 2}}}}$$
[ As $$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + \lambda x} \right)^{{1 \over x}}} = {e^\lambda }$$ ]
$$ = {e^{\mathop {\lim }\limits_{x \to \infty } {{4 + {1 \over x}} \over {1 + {1 \over x} + {2 \over {{x^2}}}}}}} = {e^4}$$
Comments (0)
