JEE MAIN - Mathematics (2002 - No. 50)

l, m, n are the $${p^{th}}$$, $${q^{th}}$$ and $${r^{th}}$$ term of a G.P all positive, $$then\,\left| {\matrix{ {\log \,l} & p & 1 \cr {\log \,m} & q & 1 \cr {\log \,n} & r & 1 \cr } } \right|\,equals$$
- 1
2
1
0

Explanation

$$l = A{R^{p - 1}}$$

$$ \Rightarrow \log 1 = \log A + \left( {p - 1} \right)\log R$$

$$m = A{R^{q - 1}}$$

$$ \Rightarrow \log m = \log A + \left( {q - 1} \right)\log R$$

$$n = A{R^{r - 1}}$$

$$ \Rightarrow \log n = \log A + \left( {r - 1} \right)\log R$$

Now, $$\left| {\matrix{ {\log l} & p & 1 \cr {\log m} & q & 1 \cr {\log n} & r & 1 \cr } } \right|$$

$$ = \left| {\matrix{ {\log A + \left( {p - 1} \right)\log R} & p & 1 \cr {\log A + \left( {q - 1} \right)\log R} & q & 1 \cr {\log A + \left( {r - 1} \right)\log R} & r & 1 \cr } } \right|$$

Operating $${C_1} - \left( {\log R} \right){C_2} + \left( {\log R - \log A} \right){C_3}$$

$$ = \left| {\matrix{ 0 & p & 1 \cr 0 & q & 1 \cr 0 & r & 1 \cr } } \right| = 0$$

Comments (0)

Advertisement