JEE MAIN - Mathematics (2002 - No. 5)

Let $$f(2) = 4$$ and $$f'(x) = 4.$$

Then $$\mathop {\lim }\limits_{x \to 2} {{xf\left( 2 \right) - 2f\left( x \right)} \over {x - 2}}$$ is given by
$$2$$
$$- 2$$
$$- 4$$
$$3$$

Explanation

Given,

$$\mathop {\lim }\limits_{x \to 2} {{xf\left( 2 \right) - 2f\left( x \right)} \over {x - 2}}$$

= $$\mathop {\lim }\limits_{x \to 2} {{xf\left( 2 \right) - 2f\left( 2 \right) + 2f\left( 2 \right) - 2f\left( x \right)} \over {x - 2}}$$

= $$\mathop {\lim }\limits_{x \to 2} {{f\left( 2 \right)\left( {x - 2} \right) - 2\left\{ {f\left( x \right) - f\left( 2 \right)} \right\}} \over {x - 2}}$$

= $$f\left( 2 \right) - 2\mathop {\lim }\limits_{x \to 2} {{f\left( x \right) - f\left( 2 \right)} \over {x - 2}}$$

           $$\left[ {As\,f'\left( x \right) = \mathop {\lim }\limits_{x \to 2} {{f\left( x \right) - f\left( 2 \right)} \over {x - 2}}} \right]$$

= $$f\left( 2 \right) - 2f'\left( x \right)$$

= 4 - 2 $$ \times $$ 4

= - 4

Comments (0)

Advertisement