JEE MAIN - Mathematics (2002 - No. 31)

$$\overrightarrow a = 3\widehat i - 5\widehat j$$ and $$\overrightarrow b = 6\widehat i + 3\widehat j$$ are two vectors and $$\overrightarrow c $$ is a vector such that $$\overrightarrow c = \overrightarrow a \times \overrightarrow b $$ then $$\left| {\overrightarrow a } \right|:\left| {\overrightarrow b } \right|:\left| {\overrightarrow c } \right|$$ =
$$\sqrt {34} :\sqrt {45} :\sqrt {39} $$
$$\sqrt {34} :\sqrt {45} :39$$
$$34:39:45$$
$$\,39:35:34$$

Explanation

To solve this problem, let's take it step by step, beginning with calculating each of the vector magnitudes (or norms) and then finding the magnitude of the cross product vector $\overrightarrow{c}$.

Given vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ are:

$\overrightarrow{a} = 3\widehat{i} - 5\widehat{j}$

$\overrightarrow{b} = 6\widehat{i} + 3\widehat{j}$

  1. Magnitude of $\overrightarrow{a}$

The magnitude of vector $\overrightarrow{a}$ is calculated using the formula:

$\left| \overrightarrow{a} \right| = \sqrt{(3)^2 + (-5)^2} = \sqrt{9 + 25} = \sqrt{34}.$

  1. Magnitude of $\overrightarrow{b}$

Similarly, the magnitude of vector $\overrightarrow{b}$ is calculated as:

$\left| \overrightarrow{b} \right| = \sqrt{(6)^2 + (3)^2} = \sqrt{36 + 9} = \sqrt{45}.$

  1. Calculating $\overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b}$

The cross product of two vectors $\overrightarrow{a}$ and $\overrightarrow{b}$ in 3-dimensional space is given by:

$\overrightarrow{c} = \overrightarrow{a} \times \overrightarrow{b} = \left| \begin{array}{ccc} \widehat{i} & \widehat{j} & \widehat{k} \\ 3 & -5 & 0 \\ 6 & 3 & 0 \end{array} \right|$

For our provided vectors, the $k$ component of both vectors is $0$, thus their cross product will be purely in the $k$ direction. The determinant simplifies to:

$\overrightarrow{c} = (3 \times 3 - (-5) \times 6)\widehat{k} = (9 + 30)\widehat{k} = 39\widehat{k}.$

  1. Magnitude of $\overrightarrow{c}$

The magnitude of vector $\overrightarrow{c}$ is:

$\left| \overrightarrow{c} \right| = \sqrt{39^2} = 39.$

Finally, the ratio of the magnitudes of vectors $\overrightarrow{a}$, $\overrightarrow{b}$, and $\overrightarrow{c}$ is thus:

$\sqrt{34}:\sqrt{45}:39.$

Therefore, the correct answer is:

Option B) $\sqrt{34}:\sqrt{45}:39.$

Comments (0)

Advertisement