JEE MAIN - Mathematics (2002 - No. 3)

$$\mathop {\lim }\limits_{x \to 0} {{\sqrt {1 - \cos 2x} } \over {\sqrt 2 x}}$$ is
$$1$$
$$-1$$
zero
does not exist

Explanation

$$\lim {{\sqrt {1 - \cos \,2x} } \over {\sqrt 2 x}} \Rightarrow \lim {{\sqrt {1 - \left( {1 - 2\,{{\sin }^2}\,x} \right)} } \over {\sqrt 2 x}}$$

$$\mathop {\lim }\limits_{x \to 0} {{\sqrt {2\,{{\sin }^2}\,x} } \over {\sqrt {2x} }} \Rightarrow \mathop {\lim }\limits_{x \to 0} {{\left| {\sin x} \right|} \over x}$$

The limit of above does not exist as

$$LHS = - 1 \ne RHL = 1$$

Comments (0)

Advertisement