JEE MAIN - Mathematics Hindi (2025 - 4th April Evening Shift - No. 13)

यदि $1^2 \cdot\left({ }^{15} \mathrm{C}_1\right)+2^2 \cdot\left({ }^{15} \mathrm{C}_2\right)+3^2 \cdot\left({ }^{15} \mathrm{C}_3\right)+\ldots+15^2 \cdot\left({ }^{15} \mathrm{C}_{15}\right)=2^{\mathrm{m}} \cdot 3^{\mathrm{n}} \cdot 5^{\mathrm{k}}$, जहाँ $\mathrm{m}, \mathrm{n}, \mathrm{k} \in \mathrm{N}$ है, तो $\mathrm{m}+\mathrm{n}+\mathrm{k}$ बराबर है :
20
19
18
21

Comments (0)

Advertisement