JEE MAIN - Mathematics Hindi (2025 - 23rd January Evening Shift - No. 1)
यदि $\mathrm{I}=\int_0^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} \mathrm{~d} x$, तब $\int_0^{21} \frac{x \sin x \cos x}{\sin ^4 x+\cos ^4 x} \mathrm{~d} x$ बराबर है :
$\frac{\pi^2}{12}$
$\frac{\pi^2}{4}$
$\frac{\pi^2}{16}$
$\frac{\pi^2}{8}$
Comments (0)
