JEE MAIN - Mathematics Hindi (2025 - 22nd January Evening Shift - No. 14)

यदि $\lim _\limits{x \rightarrow \infty}\left(\left(\frac{\mathrm{e}}{1-\mathrm{e}}\right)\left(\frac{1}{\mathrm{e}}-\frac{x}{1+x}\right)\right)^x=\alpha$, तब $\frac{\log _{\mathrm{e}} \alpha}{1+\log _{\mathrm{e}} \alpha}$ का मान समान है:
$e^{-2}$
$\mathrm{e}^2$
$e$
$e^{-1}$

Comments (0)

Advertisement