JEE MAIN - Mathematics Hindi (2024 - 30th January Morning Shift - No. 4)

माना दो सदिशों $$\overrightarrow{\mathrm{a}}=\mathrm{a}_1 \hat{i}+\mathrm{a}_2 \hat{j}+\mathrm{a}_3 \hat{k}$$ तथा $$\overrightarrow{\mathrm{b}}=\mathrm{b}_1 \hat{i}+\mathrm{b}_2 \hat{j}+\mathrm{b}_3 \hat{k}$$ के लिए $$|\overrightarrow{\mathrm{a}}|=1, \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=2$$ तथा $$|\vec{b}|=4$$ हैं। यदि $$\vec{c}=2(\vec{a} \times \vec{b})-3 \vec{b}$$ है, तो $$\vec{b}$$ तथा $$\vec{c}$$ के बीच कोण है :
$$\cos ^{-1}\left(-\frac{1}{\sqrt{3}}\right)$$
$$\cos ^{-1}\left(\frac{2}{3}\right)$$
$$\cos ^{-1}\left(\frac{2}{\sqrt{3}}\right)$$
$$\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

Comments (0)

Advertisement