JEE MAIN - Mathematics Hindi (2024 - 27th January Evening Shift - No. 17)

समाकलन $$\int \frac{\left(x^8-x^2\right) \mathrm{d} x}{\left(x^{12}+3 x^6+1\right) \tan ^{-1}\left(x^3+\frac{1}{x^3}\right)}$$ बराबर है :
$$\log _{\mathrm{e}}\left(\left|\tan ^{-1}\left(x^3+\frac{1}{x^3}\right)\right|\right)^{1 / 3}+\mathrm{C}$$
$$\log _{\mathrm{e}}\left(\left|\tan ^{-1}\left(x^3+\frac{1}{x^3}\right)\right|\right)+\mathrm{C}$$
$$\log _{\mathrm{e}}\left(\left|\tan ^{-1}\left(x^3+\frac{1}{x^3}\right)\right|\right)^{1 / 2}+\mathrm{C}$$
$$\log _e\left(\left|\tan ^{-1}\left(x^3+\frac{1}{x^3}\right)\right|\right)^3+\mathrm{C}$$

Comments (0)

Advertisement