JEE MAIN - Mathematics Hindi (2023 - 30th January Morning Shift - No. 4)

यदि [t] महत्तम पुणांक $$\leq \mathrm{t}, \frac{3(\mathrm{e}-1)}{\mathrm{e}} \int_\limits{1}^{2} x^{2} \mathrm{e}^{[x]+\left[x^{3}\right]} \mathrm{d} x$$ का मान है :
$$\mathrm{e^8-e}$$
$$\mathrm{e^7-1}$$
$$\mathrm{e^9-e}$$
$$\mathrm{e^8-1}$$

Comments (0)

Advertisement