JEE MAIN - Mathematics Hindi (2023 - 1st February Morning Shift - No. 10)

माना $$f(x)=\left|\begin{array}{ccc}1+\sin ^2 x & \cos ^2 x & \sin 2 x \\ \sin ^2 x & 1+\cos ^2 x & \sin 2 x \\ \sin ^2 x & \cos ^2 x & 1+\sin 2 x\end{array}\right|, x \in\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$$ हैं यदि $$f$$ के अधिकतम व न्यूनतम मान क्रमश: $$\alpha$$ व $$\beta$$ हैं, तब
$$\alpha^2-\beta^2=4\sqrt3$$
$$\beta^2-2\sqrt\alpha=\frac{19}{4}$$
$$\beta^2+2\sqrt{\alpha}=\frac{19}{4}$$
$$\alpha^2+\beta^2=\frac{9}{2}$$

Comments (0)

Advertisement