JEE MAIN - Mathematics Hindi (2022 - 29th June Morning Shift - No. 18)

माना अवकल समीकरण $${{dy} \over {dx}} + {{\sqrt 2 y} \over {2{{\cos }^4}x - {{\cos }^2}x}} = x{e^{{{\tan }^{ - 1}}(\sqrt 2 \cot 2x)}},\,0 < x < {\pi \over 2}$$, $$y\left( {{\pi \over 4}} \right) = {{{\pi ^2}} \over {32}}$$, का हल $$y=y(x)$$ है । यदि $$y\left(\frac{\pi}{3}\right)=\frac{\pi^{2}}{18} \mathrm{e}^{-\tan ^{-1}(\alpha)}$$ है, तो $$3 \alpha^{2}$$ का मान बराबर है ___________.
Answer
2

Comments (0)

Advertisement