JEE MAIN - Mathematics Hindi (2022 - 28th June Evening Shift - No. 18)

माना सदिश $$3 \hat{i}+\frac{1}{2} \hat{j}+2 \hat{k}$$ के लंबवत एक सदिश $$\vec{a}$$ है। यदि $$\vec{a} \times(2 \hat{i}+\hat{k})=2 \hat{i}-13 \hat{j}-4 \hat{k}$$ है, तो सदिश $$\overrightarrow{a}$$ का सदिश $$2 \hat{i}+2 \hat{j}+\hat{k}$$ पर प्रक्षेप है :
$${1 \over 3}$$
1
$${5 \over 3}$$
$${7 \over 3}$$

Explanation

माना $$\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k$$

तथा $$\overrightarrow a \,.\,\left( {3\widehat i - {1 \over 2}\widehat j + 2\widehat k} \right) = 0 \Rightarrow 3{a_1} + {{{a_2}} \over 2} + 2{a_3} = 0$$ ..... (i)

तथा $$\overrightarrow a \times (2\widehat i + \widehat k) = 2\widehat i - 13\widehat j - 4\widehat k$$

$$ \Rightarrow {a_2}\widehat i + (2{a_3} - {a_1})\widehat j - 2{a_2}\widehat k = 2\widehat i - 13\widehat j - 4\widehat k$$

$$\therefore$$ $${a_2} = 2$$ ..... (ii)

तथा $${a_1} - 2{a_3} = 13$$ ..... (iii)

समीकरण (i) और (iii) से : $${a_1} = 3$$ and $${a_3} = - 5$$

$$\therefore$$ $$\overrightarrow a = 3\widehat i + 2\widehat j - 5\widehat k$$

$$\therefore$$ $$\overrightarrow a $$ का प्रक्षेपण $$2\widehat i + 2\widehat j + \widehat k$$ पर $$ = {{6 + 4 - 5} \over 3} = {5 \over 3}$$

Comments (0)

Advertisement