JEE MAIN - Mathematics Hindi (2022 - 28th June Evening Shift - No. 17)

$$\mathop {\lim }\limits_{n \to \infty } 6\tan \left\{ {\sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {{1 \over {{r^2} + 3r + 3}}} \right)} } \right\}$$ का मान बराबर है :
1
2
3
6

Explanation

$$\mathop {\lim }\limits_{n \to \infty } 6\tan \left\{ {\sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {{1 \over {{r^2} + 3r + 3}}} \right)} } \right\}$$

$$ = \mathop {\lim }\limits_{n \to \infty } 6\tan \left\{ {\sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {{{(r + 2) - (r + 1)} \over {1 + (r + 2)(r + 1)}}} \right)} } \right\}$$

$$ = \mathop {\lim }\limits_{n \to \infty } 6\tan \left\{ {\sum\limits_{r = 1}^n {({{\tan }^{ - 1}}(r + 2) - {{\tan }^{ - 1}}(r + 1))} } \right\}$$

$$ = \mathop {\lim }\limits_{n \to \infty } 6\tan \left\{ {{{\tan }^{ - 1}}(n + 2) - {{\tan }^{ - 1}}2} \right\}$$

$$ = 6\tan \left\{ {{\pi \over 2} - {{\cot }^{ - 1}}\left( {{1 \over 2}} \right)} \right\}$$

$$ = 6\tan \left( {{{\tan }^{ - 1}}\left( {{1 \over 2}} \right)} \right)$$

$$ = 3$$

Comments (0)

Advertisement