JEE MAIN - Mathematics Hindi (2022 - 28th July Evening Shift - No. 8)

माना $$x(t)=2 \sqrt{2} \cos t \sqrt{\sin 2 t}$$ तथा $$y(t)=2 \sqrt{2} \sin t \sqrt{\sin 2 t}, t \in\left(0, \frac{\pi}{2}\right)$$ हैं। तो $$t=\frac{\pi}{4}$$ पर $$\frac{1+\left(\frac{d y}{d x}\right)^{2}}{\frac{d^{2} y}{d x^{2}}}$$ बराबर है
$${{ - 2\sqrt 2 } \over 3}$$
$${2 \over 3}$$
$${1 \over 3}$$
$${-2 \over 3}$$

Comments (0)

Advertisement