JEE MAIN - Mathematics Hindi (2022 - 27th July Evening Shift - No. 3)
यदि समीकरण
$${x^2} - \left( {5 + {3^{\sqrt {{{\log }_3}5} }} - {5^{\sqrt {{{\log }_5}3} }}} \right)x + 3\left( {{3^{{{({{\log }_3}5)}^{{1 \over 3}}}}} - {5^{{{({{\log }_5}3)}^{{2 \over 3}}}}} - 1} \right) = 0$$
के मूल $$\alpha, \beta$$ हैं, तो वह समीकरण, जिसके मूल $$\alpha+\frac{1}{\beta}$$ तथा $$\beta+\frac{1}{\alpha}$$ हैं, है :
$$3 x^{2}-20 x-12=0$$
$$3 x^{2}-10 x-4=0$$
$$3 x^{2}-10 x+2=0$$
$$3 x^{2}-20 x+16=0$$
Comments (0)
