JEE MAIN - Mathematics Hindi (2022 - 26th June Evening Shift - No. 18)
माना $$X=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], Y=\alpha I+\beta X+\gamma X^{2}$$ तथा $$Z=\alpha^{2} I-\alpha \beta X+\left(\beta^{2}-\alpha \gamma\right) X^{2}, \alpha, \beta, \gamma \in \mathbb{R}$$ हैं। यदि $$Y^{-1}=\left[\begin{array}{ccc}
1 / 5 & -2 / 5 & 1 / 5 \\
0 & 1 / 5 & -2 / 5 \\
0 & 0 & 1 / 5
\end{array}\right]$$ है, तो $$(\alpha-\beta+\gamma)^{2}$$ बराबर है ______________ |
Answer
100
Comments (0)
