JEE MAIN - Mathematics Hindi (2021 - 31st August Morning Shift - No. 12)
यदि फ़ंक्शन
$$f(x) = \left\{ {\matrix{ {{1 \over x}{{\log }_e}\left( {{{1 + {x \over a}} \over {1 - {x \over b}}}} \right)} & , & {x < 0} \cr k & , & {x = 0} \cr {{{{{\cos }^2}x - {{\sin }^2}x - 1} \over {\sqrt {{x^2} + 1} - 1}}} & , & {x > 0} \cr } } \right.$$ x = 0 पर अबाधित है, तो $${1 \over a} + {1 \over b} + {4 \over k}$$ के बराबर है :
$$f(x) = \left\{ {\matrix{ {{1 \over x}{{\log }_e}\left( {{{1 + {x \over a}} \over {1 - {x \over b}}}} \right)} & , & {x < 0} \cr k & , & {x = 0} \cr {{{{{\cos }^2}x - {{\sin }^2}x - 1} \over {\sqrt {{x^2} + 1} - 1}}} & , & {x > 0} \cr } } \right.$$ x = 0 पर अबाधित है, तो $${1 \over a} + {1 \over b} + {4 \over k}$$ के बराबर है :
$$-$$5
5
$$-$$4
4
Comments (0)
