JEE MAIN - Mathematics Hindi (2021 - 26th February Evening Shift - No. 5)
यदि 0 < a, b < 1, और tan$$-$$1a + tan$$-$$1b = $${\pi \over 4}$$, तब
$$(a + b) - \left( {{{{a^2} + {b^2}} \over 2}} \right) + \left( {{{{a^3} + {b^3}} \over 3}} \right) - \left( {{{{a^4} + {b^4}} \over 4}} \right) + .....$$ का मान है :
$$(a + b) - \left( {{{{a^2} + {b^2}} \over 2}} \right) + \left( {{{{a^3} + {b^3}} \over 3}} \right) - \left( {{{{a^4} + {b^4}} \over 4}} \right) + .....$$ का मान है :
$${\log _e}$$2
e
$${\log _e}\left( {{e \over 2}} \right)$$
e2 = 1
Comments (0)
