JEE MAIN - Mathematics Hindi (2021 - 17th March Evening Shift - No. 13)
यदि y = y(x) डिफरेंशियल समीकरण का हल हो
$$\cos x(3\sin x + \cos x + 3)dy = (1 + y\sin x(3\sin x + \cos x + 3))dx,0 \le x \le {\pi \over 2},y(0) = 0$$ का। तब, $$y\left( {{\pi \over 3}} \right)$$ बराबर है :
$$\cos x(3\sin x + \cos x + 3)dy = (1 + y\sin x(3\sin x + \cos x + 3))dx,0 \le x \le {\pi \over 2},y(0) = 0$$ का। तब, $$y\left( {{\pi \over 3}} \right)$$ बराबर है :
$$2{\log _e}\left( {{{\sqrt 3 + 7} \over 2}} \right)$$
$$2{\log _e}\left( {{{3\sqrt 3 - 8} \over 4}} \right)$$
$$2{\log _e}\left( {{{2\sqrt 3 + 10} \over {11}}} \right)$$
$$2{\log _e}\left( {{{2\sqrt 3 + 9} \over 6}} \right)$$
Comments (0)
