JEE MAIN - Mathematics Hindi (2020 - 7th January Evening Slot - No. 12)

यदि $${{3 + i\sin \theta } \over {4 - i\cos \theta }}$$, $$\theta $$ $$ \in $$ [0, 2$$\theta $$], एक वास्तविक संख्या है, तो $ सिन$$\theta $$ + आइकोस$$\theta $$ का तर्क है :
$$\pi - {\tan ^{ - 1}}\left( {{3 \over 4}} \right)$$
$$ - {\tan ^{ - 1}}\left( {{3 \over 4}} \right)$$
$${\tan ^{ - 1}}\left( {{4 \over 3}} \right)$$
$$\pi - {\tan ^{ - 1}}\left( {{4 \over 3}} \right)$$

Comments (0)

Advertisement