JEE MAIN - Mathematics Hindi (2020 - 3rd September Evening Slot - No. 2)

माना a, b c $$ \in $$ R ऐसे हैं कि a2 + b2 + c2 = 1। अगर
$$a\cos \theta = b\cos \left( {\theta + {{2\pi } \over 3}} \right) = c\cos \left( {\theta + {{4\pi } \over 3}} \right)$$,
जहाँ $${\theta = {\pi \over 9}}$$, तब सदिशों $$a\widehat i + b\widehat j + c\widehat k$$ और $$b\widehat i + c\widehat j + a\widehat k$$ के बीच का कोण है :
0
$${{\pi \over 9}}$$
$${{{2\pi } \over 3}}$$
$${{\pi \over 2}}$$

Comments (0)

Advertisement