JEE MAIN - Mathematics Hindi (2019 - 9th January Morning Slot - No. 3)
किसी $$\theta \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$, के लिए व्यंजक $$3(\sin \theta-\cos \theta)^{4}+6(\sin \theta+\cos \theta)^{2}+4 \sin ^{6} \theta$$ बराबर है:
$$13-4 \cos ^{2} \theta+6 \sin ^{2} \theta \cos ^{2} \theta$$
$$13-4 \cos ^{6} \theta$$
$$13-4 \cos ^{2} \theta+6 \cos ^{4} \theta$$
$$13-4 \cos ^{4} \theta+2 \sin ^{2} \theta \cos ^{2} \theta$$
Comments (0)
