JEE MAIN - Mathematics Hindi (2019 - 12th April Evening Slot - No. 11)
$$\theta \in \left( {0,{\pi \over 3}} \right)$$ की एक मान जिसके लिए
$$\left| {\matrix{ {1 + {{\cos }^2}\theta } & {{{\sin }^2}\theta } & {4\cos 6\theta } \cr {{{\cos }^2}\theta } & {1 + {{\sin }^2}\theta } & {4\cos 6\theta } \cr {{{\cos }^2}\theta } & {{{\sin }^2}\theta } & {1 + 4\cos 6\theta } \cr } } \right| = 0$$, है :
$$\left| {\matrix{ {1 + {{\cos }^2}\theta } & {{{\sin }^2}\theta } & {4\cos 6\theta } \cr {{{\cos }^2}\theta } & {1 + {{\sin }^2}\theta } & {4\cos 6\theta } \cr {{{\cos }^2}\theta } & {{{\sin }^2}\theta } & {1 + 4\cos 6\theta } \cr } } \right| = 0$$, है :
$${\pi \over {18}}$$
$${\pi \over {9}}$$
$${{7\pi } \over {24}}$$
$${{7\pi } \over {36}}$$
Comments (0)
