JEE MAIN - Mathematics Hindi (2019 - 11th January Evening Slot - No. 11)
यदि $$\alpha $$ और $$\beta $$ द्विघात समीकरण x2
sin $$\theta $$ – x(sin $$\theta $$ cos $$\theta $$ + 1) + cos $$\theta $$ = 0 (0 < $$\theta $$ < 45o) के जड़ हैं, और $$\alpha $$ < $$\beta $$ है। तब $$\sum\limits_{n = 0}^\infty {\left( {{\alpha ^n} + {{{{\left( { - 1} \right)}^n}} \over {{\beta ^n}}}} \right)} $$ का मान है :
$${1 \over {1 + \cos \theta }} + {1 \over {1 - \sin \theta }}$$
$${1 \over {1 - \cos \theta }} + {1 \over {1 + \sin \theta }}$$
$${1 \over {1 - \cos \theta }} - {1 \over {1 + \sin \theta }}$$
$${1 \over {1 + \cos \theta }} - {1 \over {1 - \sin \theta }}$$
Comments (0)
