JEE MAIN - Mathematics Hindi (2019 - 10th January Morning Slot - No. 10)
यदि d $$ \in $$ R, और
$$A = \left[ {\matrix{ { - 2} & {4 + d} & {\left( {\sin \theta } \right) - 2} \cr 1 & {\left( {\sin \theta } \right) + 2} & d \cr 5 & {\left( {2\sin \theta } \right) - d} & {\left( { - \sin \theta } \right) + 2 + 2d} \cr } } \right],$$
$$\theta \in \left[ {0,2\pi } \right]$$ यदि det(A) का न्यूनतम मान 8 है, तब d का एक मान है -
$$A = \left[ {\matrix{ { - 2} & {4 + d} & {\left( {\sin \theta } \right) - 2} \cr 1 & {\left( {\sin \theta } \right) + 2} & d \cr 5 & {\left( {2\sin \theta } \right) - d} & {\left( { - \sin \theta } \right) + 2 + 2d} \cr } } \right],$$
$$\theta \in \left[ {0,2\pi } \right]$$ यदि det(A) का न्यूनतम मान 8 है, तब d का एक मान है -
$$-$$ 7
$$2\left( {\sqrt 2 + 2} \right)$$
$$-$$ 5
$$2\left( {\sqrt 2 + 1} \right)$$
Comments (0)
