JEE MAIN - Mathematics Hindi (2019 - 10th April Evening Slot - No. 12)

माना y = y(x) समीकरण का समाधान हो,
$${{dy} \over {dx}} + y\tan x = 2x + {x^2}\tan x$$, $$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$ के लिए, ताकि y(0) = 1। तब :
$$y\left( {{\pi \over 4}} \right) - y\left( { - {\pi \over 4}} \right) = \sqrt 2 $$
$$y'\left( {{\pi \over 4}} \right) - y'\left( { - {\pi \over 4}} \right) = \pi - \sqrt 2 $$
$$y\left( {{\pi \over 4}} \right) + y\left( { - {\pi \over 4}} \right) = {{{\pi ^2}} \over 2} + 2$$
$$y'\left( {{\pi \over 4}} \right) + y'\left( { - {\pi \over 4}} \right) = - \sqrt 2 $$

Comments (0)

Advertisement