JEE MAIN - Mathematics Hindi (2018 - 16th April Morning Slot - No. 10)

यदि $$f(x)=\int_{0}^{x} \mathrm{t}(\sin x-\sin t) \mathrm{dt}$$ है, तो :
$$f'''(x) + f''(x) = \sin x$$
$$f'''(x) + f''(x) - f'(x) = \cos x$$
$$f'''(x) + f'(x) = \cos x - 2x\sin x$$
$$f'''(x) - f''(x) = \cos x - 2x\sin x$$

Comments (0)

Advertisement